

AF Technologies

ManTech Lean Blade Repair Pilot A Success Story

AFRL/ML R. Reed, DSN 784-4393

Technology Investment Schedule As of 04 APR 2001 Prior 01 02 03 Transition to OC-ALC/LP

Technology Availability

Funding (\$M) – PE78

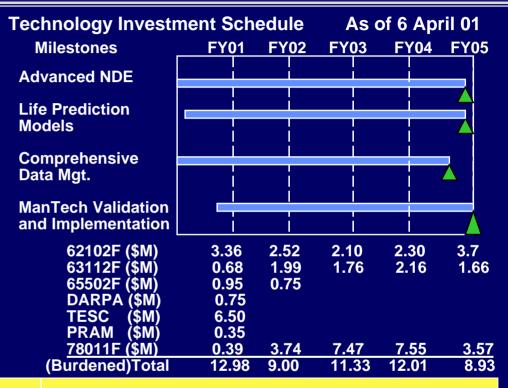
5.3

Description

• Establish a low cost high quality "Lean" repair capability for advanced propulsion systems

Technology

- Model repair process enterprise
- Develop analytical tool box
- Implement advanced manufacturing concept
- Develop automated blade tracking system


- For F100 engine low pressure stage 1 nozzle and stator:
 - Repair process travel distance reduced from 9 miles to 2 miles
 - Flow days reduced from 111 days to 55 days for nozzle and from 90 days to 15 days for stator
 - Net cost avoidance of \$21.5M over ten years
- Similar payoff for other components

Engine Rotor Life Extension (ERLE)

AFRL/ML Bruce Rasmussen, DSN 785-9822

Cost Avoidance through Life Extension

Description

 Develop, Validate and Implement advanced life management tools and practices that increase safety and extend useful of critical engine components in partnership with OC-ALC

Technologies

• Life Prediction, Non-Destructive Evaluation, Data Fusion, and Repair Technologies

- Increased safety through improved inspections and more accurate life prediction
- Improved readiness through reduced depot overhaul time and cost
- Reduced maintenance and associated rework
- Cost Avoidance over \$600M (FY05-FY10)

Laser Shock Peening (LSP) for Aircraft Structure

AFRL/ML, David W. See, DSN 784-4387

Technology Investment Sch	iedule	As of 4	Papr 2001
	Prio	r 01	02 Tota
ManTech for Affordable LSP			
Rapid Laser Shock Peening Development			
LSP of F119 IBRs			
LSP Demonstration for High Strength Affordable Castings		\wedge	, V
Engine Technology Availability			
Funding (\$M)	5.3	1.8	7.1
MT (7.8,SBIR, RRPI, AMTFDII	0.8	0.4	1.2

Description

- Develop laser peening for fracture prevention in fatigue and corrosion-critical aircraft structures.
- Increase the reliability of structural repairs.
- Mobile laser peening for aircraft repairs in depot.

Technology

 Laser peening produces deep compressive residual stresses into metal surfaces to significantly inhibit fatigue crack initiation and propagation.

- LSP process ensures no crack growth from FOD in fan and compressor blade applications
- Implemented on F101 and F110: Working implementation on F119 (May 01)
- Fatigue prevention in fracture critical aircraft structure
- Improved reliability of aging aircraft parts

ManTech High Cycle Fatigue/Damping Technologies

AFRL/ML Carl M. Lombard DSN 674-4388

「echnology Investment S	Sche	dule	As of	f 6 Ap	r 2001
	02	03	04 ()5 O	6
Turbine Damping Scale-Up					
Blade/Rim Damping Scale-Up & Durability Testing					
Damped Fan Blisks Delivered for Full Engine Tests					
Technology Availability Funding (\$M)					
7.8 (ManTech)	0	.500	1.000	.900	.100
	.250 .250	0 2.000	0 1.750	0 9.00	0 .100

Description

 Scale-up and engine demonstrate affordable manufacturing processes for advanced damping systems to reduce resonant vibration induced high cycle fatigue in turbine engine blades.

Technology

Friction dampers, viscoelastic material (VEM)
 blade constrained layer damping systems, VEM
 rim dampers, hard coatings, and air dampers.

- Reduced HCF-related, non-recoverable, in-flight shutdowns by 50%
- Reduce total engine maintenance costs by 15%
- Increased engine performance and efficiencies
 - Allows greater use of advanced engine designs

Next Generation Transparency (NGT) Program

AFRL/ML, Bob McCarty, DSN 674-4595

Technology Inve	estment	Schedule Prior	As of FY01	29 Jan 01 FY02
Requirements Defi	nition	\triangle		
Subscale Manufact and Testing	turing	\triangle		
Final Design of Too	ol			
Full Scale Article N	lanufactı	ıring		
Full Scale Article C	oating &	Testing		
Tech Availability		4.00		
5 (·)	5.2	1.26	0.60	
	5.3 7.8	0.51 1.10	0.69 0.20	0.20
	DARPA	1.02	0.20	0.20
	Boeing	1.95	1.00	0.85

Description

- Demonstrate Affordable Frameless Transparency Technology Integration for Fighter/Attack Aircraft
- Full Scale Tests for Safety-of-Flight Compliance

Technology

- Direct Forming, Injection Molding
- Explosive Severance for Crew Escape

- 80% Reduction in Total Ownership Costs
 Top Rated Affordability Pilot Program
- Reduce Transparency Weight by 20%
- Replacement During Integrated Combat Turn
- Reduce Parts Count by 90%
- Precision Shape for LO
- Precision Optics for Helmet Mounted Display

MANTECH Electronic Parts Obsolescence Initiative

AFRL/ML Tony Bumbalough, DSN 674-4594

Technology Investment Schedule As of 12 Feb 2001

Prior 01 02 03 04 05

Enhanced Commercial Tools

- Decision Making
- Re-engineering

Application of Commercially Manufactured Electronics

- Life Prediction Tools
- Access to Multiple Foundries

Pilot Validation Demonstrations

- Technical, Business Practices
- Life Cycle Cost Modeling

Technology Availability

Funding (\$M) - 7.8

Benefits to the War Fighter

 Develop technologies to improve obsolescence management to ensure mission readiness and increase the fielded life of weapons systems at an affordable cost

Description

- **Technology**
- <u>Proactive</u> decision management tools & business practices; physics of failure reliability prediction; re-engineering tools; life cycle cost modeling

- Ability to efficiently insert current/new technology
- Ability to efficiently respond to loss of supplier base or discontinuance of specific product line
- Ability to identify implement the most affordable obsolescence solutions
 - Substantial reduction in support costs

R&D Laboratory

Advanced Aircraft Corrosion Protection

AFRL/ML Steve Szaruga DSN 785-9064

Technology Investment Schedule (FY) As of 13 Feb 01
Prior 01

Adv. Topcoat Development

Corrosion Protection Devel

Tech Availability Date

Funding (\$M) – 6.2

DARPA/AFOSR (\$M)

.82

.40

Description

 Product: Corrosion protection systems with long life topcoat and environmentally safe, non-chrome corrosion protection (sol-gel) demo'ed in a depot environment

Technology

- Advanced performance topcoat with service life of 5-8 yr (PDM to PDM)
- Non-chrome sol-gel based corrosion resistant surface treatments

- Supports ACC MNS/ORD "Advanced Aircraft Coating Capability" (MNS CAF/AMC/AETC/ AFSOC/AFMC 712-97)
- Elimination of corrosion protection related hazardous wastes and materials
- Reduced depot flow time and related maintenance costs

Chemical Abatement Treatments for Corrosion

AFRL/ML Deborah Peeler, DSN 785-4251

Technology Investment Schedule

Milestones

As of 13 Mar 01

Program Schedule

Transition Test Capability:

UVA To AFRL


Aircraft Application and Tracking

Aircraft Application and Tracking

Laboratory Testing Fielded CPC Crack Inhibition:Selection and Fatigue Testing

TAD

Funding 63112F (\$M)

Description

 Test and transition corrosion suppression technologies to the warfighter

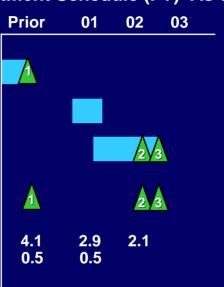
Technology

- Establish corrosion prevention compounds (CPC) testing capability within AFRL/MLSA
- Determine corrosion growth rates for in-service suppression/establish laboratory correlation
- Develop CPC application and inspection protocols
- Establish effect of selected inhibitors on crack growth rates

- Assess risk and safely defer selected corrosion maintenance until structurally necessary and/or convenient
- Establish of application and inspection intervals for CPC temporary repairs quantified
- Develop tech order data for implementation of CPC application into field supportable maintenance plan (FSMP)
- Quantify the effect of inhibition on crack growth rates

Corrosion Effects on Structural Integrity

AFRL/VA Mike Ziegler, DSN 785-3526


Technology Investment Schedule (FY) As of 28 Mar 01

Stress Corrosion Cracking
Guidelines
Model Development & Element
Testing
Component Demonstration and
Model Verification

Technology Availability Dates

Funding (\$M) - 6.3 NAVY

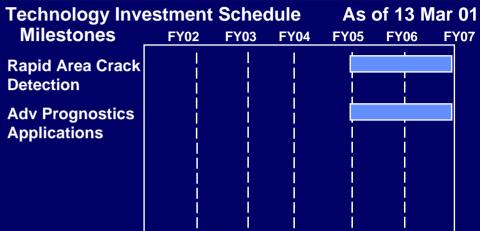
Product Description

Stress Corrosion Cracking Guidelines - Delivered

Structural Integrity (Corrosion/Fatigue) Model - Framework Delivered

Structural Integrity Tool Set-Prediction Capability for Lap Joints delivered, Handbooks & Inspection Capability Demo

Technologies


- Incorporate interaction of Corrosion with Structural Integrity
 Implement into Aircraft Structural Integrity Program
- Implement ability to predict and manage corrosion damage

- Increase Operational Readiness
- Maintain Safety
- Reduce Operations and Support Cost
 - Reduced Maintenance Actions
 - Extend Structural Life
 - Reduce Cost of Maintenance of C- 130, C-141, KC-135, C-5, F-15, F-16, A-10 ...

AFRL/ML Tom Moran, DSN 785-9800

Description

- Non-Destructive Inspection (NDI) methods targeted at multi-layer crack detection and quantification
- Periodic delivery of NDI methods to detect and quantify corrosion

Technology

- Leverage technologies from "Advanced NDE for Aging Structures" ATD & Prognostics and Vehicle Health Monitoring programs.
- Technology insertions from Neural Networking and Artificial Intelligence efforts will assist in data interpretation for wide area detection schemes.

Benefits to the War Fighter

2.27

2.31

Ability to determine the integrity of aging aircraft structures

Funding 63112F (\$M)

- Technologies to rapidly and quantitatively determine the severity (depth and area) of structural degradation from cracks and corrosion
- Increased safety through detection and elimination of detrimental multi-site damage
- Elimination of unnecessary teardown of structures in depot maintenance

Advanced NDE for Aging Structures

AFRL/ML Tom Moran, DSN 785-9800

"Corrosion of Airframe Structure is the Single, Most Costly Maintenance Problem (\$800 M per year) for USAF Aging Aircraft" (NMAB 1997)

Technology Investment Schedule (FY)

edule (FY) As of 28 Mar 01
Prior 01 02 03 04 05

Corrosion Methods Assessment / Development

Crack Detection Assessment / Development

Technology Availability Dates

6.2 Funding (\$M)

6.3 Funding (\$M)

	٨			٨	
	\triangle	1			
	Α			В	С
		\			
	D			4	Е
.85	1.22	1.13	1.02	1.10	.93
.71	.48	.83	1.68	1.60	1.10

Description

- Periodic delivery of NDI methods to detect and quantify corrosion
- NDI methods targeted at multi-layer crack detection and quantification

Technology

NDE methods with rapid, large area scanning capability

MAUS Inspection of KC-135

- Probability of Detection methodology
- Computer simulation models for NDE methodologies

- Increased safety through detection and elimination of detrimental multi-site damage
- Improved readiness through reduction of time in depot - increased aircraft availability
- Reduced maintenance costs
- Eliminate unnecessary teardown

Onded Repair Capability Enhancements

AFRL/VA Mike Ziegler, DSN 785-3526 Technology Investment Schedule (FY) As of 22 Mar 2001

Milestones

Expanded Materials Database

Updated Bonded Repair Guidelines

Advanced Metal Surface Prep

Validated D&A Models/Software

6.2 Funding (\$M)

6.3 Funding (\$M)

6.3B (CEV) Funding (\$M)

SERDP Funding (\$M)

Prior 01 02 Technology Availability Dates 0.3 0.3

1.9

1.6	2.1

0.1 0.2

0.9 0.6

Description

- Design/Analysis (D&A) Methods and Materials/Processes (M&P) for Bonded Repairs
- Validation of Models and Processes
- Documented Guidelines/Procedures and Repair Materials Data

Technologies

- PC-based Software Tools for Design & Analysis
- Sol-gel Processes for Metal Surface Preparation

- Decreased Maintenance and Support Costs and Increased Aircraft Availability
 - Reduced Design and Analysis Time
 - Reduced Repair Installation Time
 - Improved Repair Reliability/Effectiveness
 - Reduced Use of Hazardous Materials

Non-Line of Sight Chrome Replacement Technologies

AFRL/ML Tom Naguy, DSN 986-5709

Technology Investment Schedule As of 04 APR 2001

Prior 01 02 03 04

Non-Line of Sight Hard Chrome Replacements

Nano-Particle Deposition Electroplating as an Alternative to Chrome/Nickel Plating

Funding (\$M) -

62102F CEV

63859F

. 295 . 300 . 250

. 540

.350 .350

Description

Develop HVOF alternatives for non-line-of-sight coating application

Technology

- Supplements HVOF Thermal Spray Technology by developing and demonstrating chemical and electrochemical processes for chrome replacement
- Investigate the deposition of nano-scale particles in electroplating as a potential alternative for chrome and nickel NLOS plating applications

- Improved metal plating properties for NLOS requirements
- Reduced exposure and health hazards to personnel involved in chrome and nickel plating operations
- Reduced cost of environmental compliance at AF depots
- Reduced hazardous wastes and hazardous materials usage at Air Force depots

Peployed AEF Low Observable Repair Technologies

AFRL/ML Doug Carter, DSN 785-7483

Technology Investment Schedule As of 12 Feb 2001 Prior 01 02 03 04 05 Material Development Adhesion tech. for fluid contaminated surfaces

Rapid curing gap sealants, RAM and RAS

NDE sensor, tool and methodology

Technology Availability

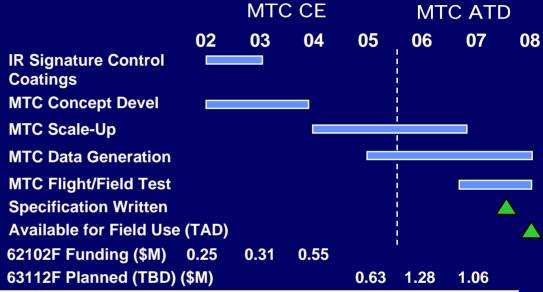
Funding (\$M) - 6.3/6.2

Description

 Develop technologies to quickly repair aircraft low observable treatments within a deployed Air Expeditionary Force environment to rapidly return aircraft to combat.

Technology

 Adhesion technology for contaminated surfaces, generic rapid cure materials and processes, and hand-held nondestructive evaluation equipment.


- Capability to apply low observable treatments to aircraft surfaces that are fluid contaminated
- Capability to rapidly repair and cure low observable treatments
- Rapid identification and inspection of damage and assessment of signature after repair

Mission Tailorable Coatings

AFRL/ML Steve Szaruga, DSN 785-9064 Preliminary Technology Investment Schedule As of: 31 Jan 01

Description

A field applicable topcoat that will tailor an aircraft's optical (visible and infrared) signature to specific mission requirements

Technology

Field kit utilizing spectrally tailored pigments combined with a quick cure, compatible binder that can be added to MIL-spec topcoats

- Supports "Adv. Aircraft Coating Capability" ORD (CAF-712-97-1-A)
- Increased survivability against air and ground based optical queuing and imaging threats
- Reduced logistic burden: additive to conventional paint; utilize brush-roll and spray application
- Applicable to all classes of aircraft